Most of today’s gene therapies rely on viruses — and that’s a problem microbiologystudy


Will celebrated his birthday last year at a laser tag park, his mother says, but other kids his age with Duchenne’s “don’t ride the bus. They don’t carry their tray in the lunchroom.”

The difference is that Will received an experimental gene therapy when he was 5 years old. Just before Christmas in 2018, doctors at Nationwide Children’s Hospital in Columbus, Ohio, gave Will an infusion of viruses. Those viruses delivered instructions to his muscles for making a short form of the dystrophin protein. Scientists at Sarepta Therapeutics in Cambridge, Mass., the company that makes the gene therapy, developed this version, called microdystrophin, to act as a replacement, hopefully protecting muscles from harm.

Though the therapy did not show statistically meaningful improvements compared with a placebo in one randomized controlled trial and results of an ongoing clinical trial to determine efficacy aren’t yet published, Will and the 83 other boys in Sarepta’s clinical trials now make the microdystrophin protein. Based in part on that evidence, the U.S. Food and Drug Administration approved the therapy earlier this year for use in 4- and 5-year-olds, and the first child to get the therapy after approval was infused on August 2.

Will Ungerer sits on a pier with water and houses in the background. He's smiling.
Since receiving gene therapy, Will Ungerer, shown in a recent picture, can do everyday things, including climb stairs easily and get dressed on his own. He’s also on a swim team.S. UNGERER

For Sheila Ungerer, there’s no question that the gene therapy is working for Will. He now does everyday things he couldn’t before, such as climb stairs easily and brush his teeth and get dressed on his own. He can ride a bike and swims up to 500 meters at swim team practice.

A few months after the infusion, Sheila overheard Will talking to his younger brother Adam. “I was just outside the door, and he said, ‘Adam, remember when my legs used to hurt all the time? They don’t hurt anymore,’ ” she recalls. “That was his experience of life with inflamed muscles in his legs that were being damaged constantly. And then for that to subside is just an immeasurable impact on his life.”

The FDA has approved seven other gene therapies for rare genetic diseases, all since 2017. Each puts a healthy copy of a gene into cells to compensate for a missing or mutated one. Some potential treatments for rare diseases that use gene editing, a type of gene therapy that makes targeted changes at the DNA level, may soon win approval too.

Around the world, more than 2,000 gene therapies are in development, according to the American Society of Gene and Cell Therapy. That figure includes cells that have been genetically engineered to fight diseases, such as immune cells called CAR-T cells programmed to kill cancer or keep lupus from attacking the body (SN: 2/2/22; SN: 9/15/22). But unlike these therapies for cancer and autoimmune diseases — which could treat potentially millions of people, making them financially attractive to drug companies — each gene therapy for a rare disease may help thousands of patients or fewer.

Since gene therapy was first proposed to treat such genetic diseases in the 1970s, it has had thrilling highs — including the first successful gene therapy, in 1990, in a 4-year-old born with severe combined immunodeficiency, or SCID — and deeply troubling lows. Clinical trial participants have ended up with cancer and other serious health complications and have even died. The biggest problem appears to be the viruses used to ferry replacement genes where they need to go. Viruses are the obvious choice for delivery: They can carry the replacement gene in their own DNA or RNA and have built-in mechanisms for getting into cells. But viruses can’t always get the genes to the right cells, can slip their cargo into the wrong spot in the DNA and can trigger the immune system to set off deadly inflammation.

Challenges and setbacks, including the death of a teenager named Jesse Gelsinger in 1999, nearly derailed gene therapy. But researchers, companies and patient advocacy groups persevered. Today, researchers are finding new ways to tackle their delivery dilemmas. Some are developing better viruses or nonviral ferries, while others are using new tools to repair or replace damaged genes in place. One technique, tested so far only in mice, relies on technology similar to what has been used in COVID-19 vaccines.


Source link

Leave a Comment

Your email address will not be published. Required fields are marked *

Scroll to Top