Preclinical study uncovers new role for cell’s waste disposal system in pancreatic cancer spread microbiologystudy

Pancreatic cancer
Pancreatic cancer cells (blue) growing as a sphere encased in membranes (red). Credit: National Cancer Institute

A preclinical study is revealing new insights into the molecular machinery that drives the aggressiveness of pancreatic cancer.

The ability of pancreatic cancer to invade and spread to other parts of the body is a major factor in its poor prognosis, with an overall five-year survival rate of less than 10%.

“Pancreatic cancer cells are known to be very metastatic and that’s a big problem,” says Leonardo Salmena, an associate professor of pharmacology and toxicology in the University of Toronto’s Temerty Faculty of Medicine.

Salmena is the senior author of a study, published in the Journal of Cell Biology, that investigates the role of a gene called INPP4B in pancreatic cancer’s ability to spread. Led by post-doctoral researcher Golam Saffi and former master’s student Lydia To, the team found that INPP4B exerts its tumor-promoting effects via a cellular organ called the lysosome.

“Classically, the lysosome is a garbage disposal organelle where old and tired proteins and other organelles get degraded to be used for energy and other building blocks for the cell,” says Salmena.

In most cells, lysosomes typically cluster around the nucleus. But in pancreatic cancer cells, the researchers found that INPP4B drove the lysosomes from the cell interior to the periphery, where these organelles fuse with the cell’s outer membrane. In doing so, the enzymes and other lysosomal factors responsible for breaking down cellular waste are dumped into the space surrounding the tumor cells.

This space contains a network of proteins and molecules that provides crucial structural support to cells and tissues while also restricting a cell’s ability to move. The release of the lysosome’s protein-degrading contents into this extracellular space causes the stabilizing network to fall apart, thus making it easier for pancreatic cancer cells to migrate and invade other tissues.

Crucially, Salmena and his team also identified the signaling pathway by which INPP4B drives the movement of lysosomes to the cell edge. INPP4B works with two other proteins—PIKfyve and TRPML-1—to modify the lysosome’s surface structure and alter local calcium levels so that the organelle is propelled to the cell periphery.

Based on these findings, the researchers are testing two experimental drugs that target TRPML-1 and PIKfyve in a preclinical model of pancreatic cancer. They are also studying how the release of lysosomal contents can change the immunological environment of the cancer cells, and what effects that might have on the immune system’s ability to respond to the tumor.

Salmena first became interested in INPP4B when, during his post-doctoral research, he found that it was involved in breast cancer. Since then, he and his team have shown that the effects of INPP4B vary depending on the context.

For example, in some breast cancer types, INPP4B behaves as a tumor suppressor whereas it has an activating role in other aggressive cancers like pancreatic cancer—which the Canadian Cancer Society expects to be the third leading cause of cancer death in Canada in 2024, with an estimated 6,100 people dying from the disease.

Salmena and his colleagues later showed that among all cancers, INPP4B levels are highest in pancreatic tumors, and that high levels of the protein are associated with decreased overall survival in people with pancreatic cancer.

More information:
Golam T. Saffi et al, INPP4B promotes PDAC aggressiveness via PIKfyve and TRPML-1–mediated lysosomal exocytosis, Journal of Cell Biology (2024). DOI: 10.1083/jcb.202401012

Provided by
University of Toronto


Citation:
Preclinical study uncovers new role for cell’s waste disposal system in pancreatic cancer spread (2024, October 23)
retrieved 23 October 2024
from https://medicalxpress.com/news/2024-10-preclinical-uncovers-role-cell-disposal.html

This document is subject to copyright. Apart from any fair dealing for the purpose of private study or research, no
part may be reproduced without the written permission. The content is provided for information purposes only.



Source link

Leave a Comment

Your email address will not be published. Required fields are marked *

Scroll to Top